

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Online Documentation Reference For Z4K

Zerto helps customers accelerate IT transformation through a single, scalable platform for cloud data management and protection. Built for enterprise scale, Zerto’s simple, software-only platform uses continuous data protection to converge disaster recovery, backup, and data mobility and eliminate the risks and complexity of modernization and cloud adoption. Zerto enables an always-on customer experience by simplifying the protection, recovery, and mobility of applications and data across private, public, and hybrid clouds. Zerto is trusted by over 9,500 customers globally and is powering offerings for Microsoft Azure, IBM Cloud, AWS, Google Cloud, Oracle Cloud, and more than 450 managed service providers.

Zerto for Kubernetes integrates continuous backup and disaster recovery into the application deployment lifecycle for containerized applications running on-premises or in the cloud as part of its cloud data management and protection platform. Easily protect and recover any Kubernetes application and its persistent data for accelerated delivery and deployment. Introducing:

	Data protection as code: Purpose-built for Kubernetes, Zerto integrates both backup and disaster recovery into the application deployment lifecycle from day one while enabling rapid development.

	Continuous data protection: Always-on replication provides continuous protection for automated, non-disruptive recovery of containerized applications within and between clusters, datacenters, or clouds. Zerto pioneers a continuous approach to protecting Kubernetes applications that doesn’t rely on legacy approaches such as snapshots. Zerto delivers the performance and simplicity required to successfully protect and recover containerized applications.

	Easily managed via API: Zerto is managed via API, allowing easy integration into existing automation tools used in Kubernetes clusters. Simplifying operations and protection for developers and DevOps engineers.

	Hybrid and multi-cloud: Native support for your Kubernetes environments, no matter where they’re running: on-premises or in the cloud, use Zerto to protect to, from, and between the platform of your choice.

	Environment and application awareness: Protect and recover complex applications as one consistent entity.

	Complete visibility and monitoring: Zerto delivers a centralized view of your entire Kubernetes environment to monitor performance and protection.

	Simple, native workflows: Simple, built-in workflows for any recovery and orchestration scenario designed to streamline operations.

 # Deploying Zerto for Kubernetes

Zerto helps customers accelerate IT transformation through a single, scalable platform for cloud data management and protection. Built for enterprise scale, Zerto’s simple, software-only platform uses continuous data protection to converge disaster recovery, backup, and data mobility and eliminate the risks and complexity of modernization and cloud adoption. Zerto enables an always-on customer experience by simplifying the protection, recovery, and mobility of applications and data across private, public, and hybrid clouds. Zerto is trusted by over 9,500 customers globally and is powering offerings for Microsoft Azure, IBM Cloud, AWS, Google Cloud, Oracle Cloud, and more than 450 managed service providers.
Zerto for Kubernetes integrates continuous backup and disaster recovery into the application deployment lifecycle for containerized applications running on-premises or in the cloud as part of its cloud data management and protection platform. Easily protect and recover any Kubernetes application and its persistent data for accelerated delivery and deployment.
In a Kubernetes environment, Zerto for Kubernetes is installed and designed to protect next generation applications.

The installation includes the following:

	Zerto Kubernetes Manager (ZKM): A containerized application that manages everything required for the replication between the protected and recovery clusters, apart from the actual replication of data. ZKM interacts with ZKM-PX as its proxy to a Kubernetes cluster and VRAs in order to orchestrate replication. ZKM manages the entire environment and therefore it is required to have only one instance of it.

	Zerto Kubernetes Manager Proxy (ZKM-PX): A containerized application which serves as a communication proxy between the Kubernetes cluster and the VRA. Zerto requires one ZKM-PX installed per cluster.

	Virtual Replication Appliance (VRA): A containerized application which is automatically installed on each cluster worker node. VRAs manage the replication of data from containers to the recovery cluster.

	Networking: When replicating between clusters, Zerto requires ingress to manage all cross cluster communication. If replication is done within the same cluster, there is no need for this component.

	Keycloak: Keycloak is an open source identity and access management tool which is used for user and component authentication. It is deployed automatically as part of the ZKM installation, and only one instance is required.

	Zerto Analytics: A Zerto user interface which provides a view over all existing VPGs.

Zerto for Kubernetes on a Single Kubernetes Cluster Deployment

![SingleCLuster](Images/Z4K_Single_Kubernetes_Cluster_Deployment.png?raw=true)

Zerto for Kubernetes on Multiple Kubernetes Cluster Deployments

In this deployment Zerto recommends installing the Zerto Kubernetes Manager on the recovery cluster.

![MultipleCLuster](Images/Z4K_Multiple_Kubernetes_Cluster_Deployments.png?raw=true)

Zerto for Kubernetes on Multiple Kubernetes Cluster Deployments - with a Separate Zerto Kubernetes Manager Cluster

In this deployment Zerto recommends installing the Zerto Kubernetes Manager on the recovery cluster.

![MultipleCLusterSeparateManager](Images/Z4K_Multiple_Kubernetes_Cluster_Deployments_Separate_ZKM.png?raw=true)

 # How To: Deploy Zerto For Kubernetes

Perform the following procedures:

	[Prepare Helm](#PrepareHelm)

	[Obtain the Image Pull Key Secret](#Obtain-the-Image-Pull-Key-Secret)

	Next, select one of the following installation procedures:

	[Install Zerto for Kubernetes on a Kubernetes Cluster](#Install-Zerto-for-Kubernetes-on-a-Kubernetes-Cluster)

	[Install Zerto Kubernetes Manager Proxy on Additional Kubernetes Clusters](#Install-Zerto-Kubernetes-Manager-Proxy-on-Additional-Kubernetes-Clusters)

	[Installing Zerto Kubernetes Manager on a Kubernetes Cluster](#Installing-Zerto-Kubernetes-Manager-on-a-Kubernetes-Cluster)

	[Downloading the Zerto Operations Help Utility](#Downloading-the-Zerto-Operations-Help-Utility)

Prepare Helm

On the Kubernetes platform, enter the following commands:

`
helm repo add zerto-z4k https://zapps-helm.zerto.com/z4k/stable
helm repo update
`

> Note: Helm name (in the example above, zerto-z4k) should be a logical name entered by the user.

Obtain the Image Pull Key Secret

	Go to [myZerto](https://www.zerto.com/myzerto/).

	If required, log in using your myZerto credentials.

	Navigate to [Support & Downloads > Software Downloads > Zerto for K8s](https://www.zerto.com/myzerto/support/downloads/#z4k), and click Generate Registry Key.

	Copy the Registry Key. You will need it later when installing the Zerto software.

![PullKey](Images/PullKey.png?raw=true)

Install Zerto for Kubernetes on a Kubernetes Cluster

This installation includes the following:

	Zerto Kubernetes Manager (ZKM)

	Zerto Kubernetes Manager Proxy (ZKM-PX)

The following are commands to install Zerto for Kubernetes on any one of the Zerto supported Kubernetes platforms.

Perform one of the following:

	Either enter the following commands:

> Note: Replace “$” variables with values relevant to your deployment.

`
helm install <installation names> zerto-z4k/z4k \
--set global.imagePullSecret=$IMAGE_PULL_KEY \
--set global.authentication. managementUser=$KEYCLOAK_USER
--set global.authentication. managementPassword =$KEYCLOAK_PASSWORD
--set global.authentication. adminUser =$ADMIN_USER
--set global.authentication. adminPassword =$ADMIN_PASSWORD
--set zkm-px.config.siteId=$SITE \
--namespace $NAMESPACE
`

	Or, first create the following values.yaml:


```
global:



	authentication:
	adminPassword: $ADMIN_PASSWORD
adminUser: $ADMIN_USER
managementPassword: $KEYCLOAK_PASSWORD
managementUser: $KEYCLOAK_USER
imagePullSecret: $IMAGE_PULL_KEY









	zkm-px:
	
	config:
	siteId: $SITE









```

And then install using the following command:

`
helm install <installation names> zerto-z4k/z4k -f values.yaml --namespace $NAMESPACE
`

In OpenShift on VMware platforms, Zerto does not deploy its own ingress controller but rather utilizes the built-in routes.
As such, to enable VRA communication, you need to disable ingress deployment and provide the external IP of the sites.

	To do this, enter the following commands:


```
–set zkm.zkmIngressControllerEnabled =false
–set zkm-px.zkmProxyIngressControllerEnabled =false
–set zkm-px.config.externalIp=$SITE_IP
–set zkm.useNginxRoutePath=false

*In case the used IngressClassName is not the default names, the below flags can be used to specify the used IngressClassName
–set zkm-px.vras.ingressClass=$ingressClassName
–set zkm-px.ingress-nginx.controller.ingressClass=$ingressClassName
–set zkm.ingress-nginx.controller.ingressClass=$ingressClassName
–set zkm.ingress.annotations.kubernetes\.io/ingress\.class=$ingressClassName
–set zkm.zkeycloak.ingress.annotations.kubernetes\.io/ingress\.class=$ingressClassName
```

Consider the following:

Parameter | Comment |

——— | ——- |

<installation names> | Specify an easy to recognize name. |

$NAMESPACE | A dedicated Zerto namespace. We recommend using the namespace zerto. |

$SITE | A unique site name. |

Install Zerto Kubernetes Manager Proxy on Additional Kubernetes Clusters

This installation includes the following:

	Zerto Kubernetes Manager Proxy (ZKM-PX)

	[Get an initial access token from Keycloak](#get-an-initial-access-token-from-keycloak)

	[Install Zerto Kubernetes Manager Proxy on Additional Clusters](#install-zerto-kubernetes-manager-proxy-on-additional-clusters)

Get an initial access token from Keycloak
Before you can begin to install Zerto Kubernetes Manager Proxy on additional Kubernetes clusters, you first need to get an initial access token from Keycloak, which was installed as part of *z4k/zkm* installation.

Creating an initial access token can be achieved in one of two ways:

Create Initial Access Token - Option 1

Generate an initial access token via REST commands to Keycloak.

> Note: If two-factor authentication (2FA) was enabled for the Keycloak management user, do not run this script.

	Download and execute the following script

`
wget https://z4k.zerto.com/public/generate_initial_access_token.bash
chmod +x generate_initial_access_token.bash
./generate_initial_access_token.bash
`

> Note: The url should end with /auth

Create Initial Access Token - Option 2

	Edit your hosts file so that zkm.z4k.zerto.com points to your load balancer address.

	Browse to Keycloak: https://zkm.z4k.zerto.com/auth

![Browse](Images/Keycloak_Option2_Browse.png?raw=true)

	Login to the Administration Console using your $KEYCLOAK_USER and $KEYCLOAK_PASSWORD.

![Sign In](Images/Keycloak_Option2_SignIn.png?raw=true)

The Keycloak Zerto Realm page opens.

4. In the left pane, click Realm Settings, and in the right pane, select the tab Client Registration.
The Initial Access Tokens tab is opened by default.

![Zerto Realm](Images/Keycloak_Option2_ZertoRealm.png?raw=true)

	On the right side of the page, click Create.

![Create](Images/Keycloak_Option2_InitialAccessToken_Create.png?raw=true)

The Add Initial Access Token area becomes available.

	In the Expiration fields, define a time-frame within which the token will expire; Seconds/Minutes/Hours/Days.

	In the Count field, define the token usage count.

![Token Expiration](Images/Keycloak_Option2_TokenExpiration.png?raw=true)

	Save the token and click Back.

![Back](Images/Keycloak_Option2_InitialAccessToken_Back.png?raw=true)

Install Zerto Kubernetes Manager Proxy on Additional Clusters

The following are commands to install Zerto Kubernetes Manager Proxy on additional clusters, on any one of the Zerto supported Kubernetes platforms.

	Perform one of the following:

	Either enter the following commands:

`
helm install <installation name> zerto-4k/zkm-px \
--set global.imagePullSecret=$IMAGE_PULL_KEY \
--set global.authentication.initialAccessToken =$INITINAL_ACCESS_TOKEN
--set config.siteId=$SITE \
--set config.zkmUrl=$ZKM_URL \
--set config.zkeycloakUrl=$ZKEYCLOAK_URL \
--namespace $NAMESPACE
`

	Or, first create the following values.yaml:


```
global:



	authentication:
	initialAccessToken: $INITIAL_ACCESS_TOKEN
imagePullSecret: $IMAGE_PULL_KEY









	config:
	siteId: $SITE
zkmUrl: $ZKM_URL
zkeycloakUrl: $ZKEYCLOAK_URL





```

And then install using the following command:
`
helm install <installation names> zerto-z4k/zkm-px -f values.yaml --namespace $NAMESPACE
`

In OpenShift on VMware platforms, Zerto does not deploy its own ingress controller but rather utilizes the built-in routes.

As such, to enable VRA communication, you need to disable ingress deployment and provide the external IP of the sites.

	To do this, enter the following commands:

`
--set zkmProxyIngressControllerEnabled=false
--set config.externalIp=$SITE_IP
`

Consider the following:

Parameter | Comment |

——— | ——- |

<installation names>	Specify an easy to recognize name.
$NAMESPACE	A dedicated Zerto namespace. We recommend using the namespace zerto.
$SITE	A unique site name.
$ZKM_URL	URL for ZKM. Typically: https://<load balancer addr>/zkm
$ZKEYCLOAK _URL	URL for Keycloak. Typically: https://<load balancer addr>/auth

Installing Zerto Kubernetes Manager on a Kubernetes Cluster

This installation includes the following:

	Zerto Kubernetes Manager (ZKM)

The following are commands to install the Zerto Kubernetes Manager on any one of the Zerto supported Kubernetes platforms.

	Perform one of the following:

	Either enter the following commands:

`
helm install <installation name> zerto/zkm \
--set global.imagePullSecret=$IMAGE_PULL_KEY \
--set global.authentication. managementUser=$KEYCLOAK_USER
--set global.authentication. managementPassword =$KEYCLOAK_PASSWORD
--set global.authentication. adminUser =$ADMIN_USER
--set global.authentication. adminPassword =$ADMIN_PASSWORD
--namespace $NAMESPACE
`

	Or, first create the following values.yaml:


```
global:



	authentication:
	adminPassword: $ADMIN_PASSWORD
adminUser: $ADMIN_USER
managementPassword: $KEYCLOAK_PASSWORD
managementUser: $KEYCLOAK_USER
imagePullSecret: $IMAGE_PULL_KEY








```

And then install using the following command:

`
helm install <installation names> zerto-z4k/zkm -f values.yaml –namespace $NAMESPACE
`

In OpenShift on VMware platforms, Zerto does not deploy its own ingress controller but rather utilizes the built-in routes.

As such, to enable VRA communication, you need to disable ingress deployment.

	To do this, enter the following command:

`
--set zkmIngressControllerEnabled=false
--set useNginxRoutePath=false
`
Consider the following:

Parameter | Comment |

——— | ——— |

<installation names> | Specify an easy to recognize name. |

$NAMESPACE | A dedicated Zerto namespace. We recommend using the namespace zerto. |

Downloading the Zerto Operations Help Utility

To facilitate entering of Zerto operations commands, download the Help Utility. This is a bash script wrapper for the kubectl API extension.

To use the Help Utility, you first download then run the command, kubectl-zrt.

To facilitate Zerto operation commands:

	On the Kubernetes platform, enter the following commands:

`
wget https://z4k.zerto.com/public/kubectl-zrt
chmod +x kubectl-zrt
sudo cp kubectl-zrt /usr/bin/
`

> Note: In case kubectl-zrt is not installed in /usr/bin, you need to point it to the relevant location.

	To view all Zerto commands, run kubectl-zrt –

![kubectl-zrt](Images/Z4K_Kubernetes_Commands.png?raw=true)

 # How To Run Zerto Operations

After deploying Zerto for Kubernetes, create a VPG, tag checkpoints then test failover:

	[Creating a VPG](#creating-a-vpg)

	[Tagging a Checkpoint](#tagging-a-checkpoint)

	[Testing Failover](#testing-failover)

Then, when you need to, perform one of the following:

	[Performing a Failover](#performing-a-failover)

	[Restoring a Single VPG](#restoring-a-single-vpg)

Zerto for Kubernetes supports backing up Kubernetes workloads and their data to a Long-term Repository and restoring them from the Long-term Repository to the original site, or to a different site/namespace.

	[Long-term Retention (LTR) in Kubernetes Environments](#long-term-retention-ltr-in-kubernetes-environments)

Log collection occurs automatically, and the logs are uploaded to Amazon S3. You can also collect logs ad hoc.

	[Log Collection](#log-collection)

Creating a VPG

To create a VPG:

1. Create a .yaml file to represent a VPG.
In the below example the VPG webApp1:

	Is configured to self replicate to its source cluster.

	Will use the storage class goldSC.

	SLA is 12 hours of history.

	The Journal can expand up to 160 GB to meet the history requirement.

> Note: It is not mandatory to configure the Journal disk size (JournalDiskSizeInGb) and history (JournalHistoryInHours); they have default values of 2 GB and 8 hours respectively.

```
apiVersion: z4k.zerto.com/v1
kind: vpg
spec:


Name : “webApp1”
SourceCluster :


Id: “prod_cluster”





	TargetCluster :
	Id: “prod_cluster”





RecoveryStorageClass : GoldSC
JournalDiskSizeInGb : 160
JournalHistoryInHours : 12




```


	Annotate Kubernetes entities to include them in the VPG.

	A VPG can contain a selection of entities like stateful sets, deployments, services, secrets and configmaps.

	Applications consisting of several components with inter-dependencies (for example secrets and deployments), should all be tagged with the same VPG annotation in order for the Failover operation to succeed.

	To include an entity to a VPG, you need to annotate it with the VPG name.

See the following example of deployment protection:

```
kind: Deployment
metadata:


name: debian
labels:


app: debian





	annotations:
	vpg: webApp1 /<VPG name as configured in VPG.yaml>









	spec:
	replicas: 1
selector:



	matchLabels:
	app: debian









	template:
	
	metadata:
	
	labels:
	app: debian







	spec:
	
	containers:
	
	name: debian1
image: debian:stable
command: [“/usr/bin/tail”,”-f”,”/dev/null”]
volumeMounts:
- mountPath: “/var/gil1”


name: external1










	volumes:
	
	name: external1
persistentVolumeClaim:


claimName: my-vol1-debian-5to6
























```


	Create the VPG by running the following command:

`
kubectl create -f vpg.yaml
`

	To get the VPG status, run the following command:

`
kubectl get vpg
`

By running this command, you can also see an overview of which entities are protected within the VPG, the VPG’s SLA and it’s settings.

Tagging a Checkpoint

To view available checkpoints:

	Run the following command.

This will present the user with a list of all available checkpoints for the VPG, including properties like the checkpoint ID.

`
kubectl get checkpoints --selector="vpg=vpgs;minAge=5m;maxAge=3d"
`

Where:

Parameter | Value | Mandatory Y/N |

——— | —– | ————- |

vpg | VPG name | Y |

minAge | Minutes: m (example: 5m), Hours: h (example: 5h) , Days: d (example: 5d) | N |

maxAge | Minutes: m (example: 5m), Hours: h (example: 5h) , Days: d (example: 5d) | N |

To tag a checkpoint:

	Run the following command:

`
kubectl zrt tag <VPG Name> <tag name>
`

Testing Failover

Run the following command to test failover.

To test failover:

	Run the following command, where <checkpoint ID> can be either an ID, or enter latest, for the latest checkpoint.

`
kubectl zrt failover-test <vpg name> <checkpoint ID>
`

To stop the test run:

	Run the following command:

`
kubectl zrt stop-test <vpg name>
`

Performing a Failover

Run the following command to failover.

To failover:

	Run the following command, where <checkpoint ID> can be either an ID, or enter latest, for the latest checkpoint.

`
kubectl zrt failover-live <vpg name> <checkpoint ID>
`

To commit the failover:

	Run the following command:

`
kubectl zrt commit <vpg name>
`

To rollback the failover:

	Run the following command:

`
kubectl zrt rollback <vpg name>
`

Restoring a Single VPG

On a single cluster deployment, only the restore and failover test operations are available. Failover is not available.

To restore a single VPG:

	Run the following command, where <checkpoint ID> can be either an ID, or enter latest, for the latest checkpoint.

`
kubectl zrt restore <vpg name> <checkpoint ID>
`

To commit the restore:

	Run the following command:

`
kubectl zrt commit-restore <vpg name>
`

To rollback the restore:

-Run the following command:

`
kubectl zrt rollback-restore <vpg name>
`

Long-term Retention (LTR) in Kubernetes Environments

Zerto for Kubernetes supports backing up Kubernetes workloads and their data to a long-term repository and restoring them from the long-term repository to the original site, or to a different site. The repository where backed up data is kept is called a Long-term Retention (LTR) repository.

Supported Repository Types
Zerto for Kubernetes supports two LTR repository types:

	AWS S3

	Azure Blob Storage

To configure Long-term Retention for your Kubernetes environment, use the following procedures:

	Backing up a VPG

	Manually Trigger a Backup

	Scheduling Long-term Retention Backups

	Restoring a VPG from a Long-term Repository

Backing up a VPG

To backup a VPG to a target LTR repository, you first need to create the VPG and update the VPG yaml file (vpg.yaml) with the LTR repository type.

Use the following examples as guidelines.
Then, continue to Manually Trigger a Backup

Example vpg.yaml File - Backing Up to AWS S3

```
apiVersion: z4k.zerto.com/v1
kind: vpg
spec:


Name: test_vpg
SourceSite:


Id: site1





	TargetSite:
	Id: site1





RecoveryStorageClass: zgp2
BackupSettings:


IsCompressionEnabled: true
RepositoryInformation:


BackTargetType: AmazonS3
AwsBackupRepositoryInformation:


Region: eu-centeral-1
Bucket: mybucket
CredentialSecretReference:



	Site:
	Id: site1



	Id:
	Name: mysecret
NamespaceId:


NamespaceName: default























```

Example vpg.yaml File - Backing Up to Azure Blob Storage

```
apiVersion: z4k.zerto.com/v1
kind: vpg
spec:


Name: test_vpg
SourceSite:


Id: site1





	TargetSite:
	Id: site1





RecoveryStorageClass: zgp2
BackupSettings:


IsCompressionEnabled: true
RepositoryInformation:


BackTargetType: AzureBlob
AzureBackupRepositoryInformation:


StorageAccountName: mystorageaccount
DirectoryId: c659fda3-cf53-43ad-befe-776ee475dcf5
CredentialSecretReference:



	Site:
	Id: site1



	Id:
	Name: mysecret
NamespaceId:


NamespaceName: default























```


	The AWS S3 access key and secret key should be captured as a Kubernetes secret, whose name appears in the vpg.yaml file. In the example above, this is mysecret.

	The secret must contain a data item for the AccessKey and a data item for the SecretKey, and can be created in any site to which Zerto Kubernetes Manager has access. In the example above, this is site1.

Example vpg.yaml File - Backing Up to Azure Blob Storage

	The Azure application id and client secret should be captured as a Kubernetes secret, whose name appears in the vpg.yaml file. In the example above, this is mysecret. In the example above, this is mysecret.

	The secret must contain a data item for the ApplicationId and a data item for the ClientSecret, and can be created in any site to which Zerto Kubernetes Manager has access. In the example above, this is site1.

Manually Trigger a Backup
After you created the VPG and updated the VPG yaml file (vpg.yaml) with the LTR repository type, you can manually trigger a backup. This creates a retention set.

To do this, run the following command:

`
kubectl zrt ltr-backup <vpg-name> <checkpoint-id>
`

A backup task is triggered.

When the task completes successfully, a retention set is created.

You can access the generated retention set ID (backupset id) by running the following command:

`
kubectl get backupset
`

Scheduling Long-term Retention Backups

To schedule Long-term Retention backups, add SchedulingAndRetentionSettings to the vpgs BackupSettings.

Use the following example as guideline.

```
apiVersion: z4k.zerto.com/v1
kind: vpg
spec:


Name: test_vpg
SourceSite:


Id: site1





	TargetSite:
	Id: site1





RecoveryStorageClass: zgp2
BackupSettings:


IsCompressionEnabled: true
RepositoryInformation:


BackTargetType: AmazonS3
AwsBackupRepositoryInformation:


Region: eu-centeral-1
Bucket: mybucket
CredentialSecretReference:



	Site:
	Id: site1



	Id:
	Name: mysecret
NamespaceId:


NamespaceName: default





















	SchedulingAndRetentionSettings:
	PeriodsSettings:
- PeriodType: Yearly


Method: Full
ExpiresAfterValue: 7
ExpiresAfterUnit: Years





	PeriodType: Monthly
Method: Full
ExpiresAfterValue: 12
ExpiresAfterUnit: Months


	PeriodType: Weekly
Method: Full
ExpiresAfterValue: 4
ExpiresAfterUnit: Weeks


	PeriodType: Daily
Method: Incremental
ExpiresAfterValue: 7
ExpiresAfterUnit: Days











```

SchedulingAndRetentionSettings considerations:

	There must be at least one Full Method.

	There can be no more than one Incremental Method.

	A Full Method cannot be followed by an Incremental Method.

In other words, if there is a Full Method, it should be the last in the chain.

	Zerto Kubernetes Manager schedules backups and expirations as needed.

Restoring a VPG from a Long-term Repository
To restore a VPG from a Long-term repository, run the following command:

`
kubectl zrt ltr-restore <backupset-id> <site-id> <storage-class> <namespace>
`

A restore task is triggered.

Consider the following, taking into account that these parameters give you flexibility in restoring to the original site, or to a different site or namespace.

Parameter | Comment |

——— | ——- |

site-id | Identifier of the site to which you want to restore. |

storage-class | Storage class, with which persistent volumes for the restored data is created. |

namespace | namespace in which you want the restored Kubernetes entities to be created. |

When the restore task completes successfully, Kubernetes entities with the prefix res- are created in the specified site and namespace.

Log Collection

Zerto for Kubernetes logs are collected by the system and automatically uploaded to Amazon S3.

Log location: S3 bucket

Ad Hoc Log Collection
Use one of the following methods:

	Running a script on Zerto Kubernetes Manager Proxy (ZKM-PX)

Run the following command, which runs the script in the background:

`
kubectl-zrt collect-logs <case/bug number>
`

	Or, you could do the following:

	Connect to the pod using the following command:

`
kubectl exec
`

	Run the following script:

`
/scripts/collect_logs_lt.bash
`

	Running a script on Zerto Kubernetes Manager (ZKM)

	Connect to the pod using the following command:

`
kubectl exec
`

	Run the following script:

`
/scripts/collect_logs_ng.bash
`

 # Minimum Requirements

Communication Requirements
- All Zerto for Kubernetes components communication occurs using HTTPS, over port 443.

Prerequisites
- Helm Package Manager

Storage Requirements
- Zerto for Kubernetes containerized applications also consume storage:
- Zerto Kubernetes Manager: 3 GB
- Zerto Kubernetes Manager Proxy: 1 GB
- Keycloak Database: 2 GB
- A storageClass with VolumeBindingMode of type “WaitForFirstConsumer” is needed for Zerto to work with persistent volumes.

 # More Resources

Introduction

[Zerto For Kubernetes Workloads And Applications](https://www.zerto.com/solutions/workloads-and-applications/zerto-for-kubernetes/)

[Data Protection As Code: Introducing Zerto For Kubernetes(Video)](https://content.zerto.com/ws-kubernetes/introducing-zerto-for-kubernetes_ev_gt_vid)

[Next-Gen Protection For Next-Gen Application(Video)](https://content.zerto.com/ws-kubernetes/next-gen-protection-for-next-gen-applications_wb_op_vid)

Techincal Documents

[State Of Data Protection For Kubernetes - Whitepaper](https://content.zerto.com/ws-kubernetes/state_of_data_protection-for-kubernetes_wp_gt_pdf)

[Zerto For Kubernetes Datasheet](https://content.zerto.com/ws-kubernetes/zerto-for-kubernetes_ds_op_pdf)

[Zerto For Kubernetes Architecture Guide](https://content.zerto.com/ws-kubernetes/zerto-for-kubernetes-architecture-guide_gd_gt_pdf)

[State Of Data Protection For Kubernetes In A Nutshell](https://content.zerto.com/ws-kubernetes/state-of-data-protection-for-kubernetes-in-a-nutshell_if_op_pdf)

Research and Reports

[ESG Data Protection Trends And Strategies For Containers](https://content.zerto.com/ws-kubernetes/esg-data-protection-trends-and-strategies-for-containers_ar_gt_pdf)

[Research Report: How Zerto Protects Stateful Container Applications](https://content.zerto.com/ws-kubernetes/451-research-report-how-zerto-protects-stateful-container-applications_ar_gt_pdf)

 # Supported Platforms

Zerto for Kubernetes can be deployed on multiple Kubernetes platforms:

Platform | Notes |

———————————— | —— |

Amazon Elastic Kubernetes Service (Amazon EKS) | |

Azure Kubernetes Service (AKS) | |

Google Kubernetes Engine (GKE) | COS nodes are not supported. And therefore, Autopilot deployment is not supported. |

Red Hat OpenShift | Zerto for Kubernetes only supports from OpenShift version 4.6 or higher. |

IBM Cloud Kubernetes Service (IKS) | |

VMware Tanzu | on top of VMware 6.7 supported in combination with Rook. From VMware 7.0u2 and onwards full native support. VMware Tanzu Kubernetes Grid (TKG) will be supported by Zerto for Kubernetes at a later date, pending compliance from VMware. |

Oracle Container Engine for Kubernetes (OKE) | supported in combination with Rook. |

Rancher | |

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/plus.png

